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Abstract We study the kinetic theory of driven and undriven granular gases, taking into
account both translational and rotational degrees of freedom. We obtain the high-energy
tail of the stationary bivariate energy distribution, depending on the total energy E and the
ratio x = √

Ew/E of rotational energy Ew to total energy. Extremely energetic particles
have a unique and well-defined distribution f (x) which has several remarkable features:
x is not uniformly distributed as in molecular gases; f (x) is not smooth but has multiple
singularities. The latter behavior is sensitive to material properties such as the collision
parameters, the moment of inertia and the collision rate. Interestingly, there are preferred
ratios of rotational-to-total energy. In general, f (x) is strongly correlated with energy and
the deviations from a uniform distribution grow with energy. We also solve for the energy
distribution of freely cooling Maxwell Molecules and find qualitatively similar behavior.

Keywords Granular materials · Kinetic theory · Nonequilibrium statistical physics ·
Energy distribution · Rotation

1 Introduction

Energy dissipation has profound consequences in driven and undriven granular materials,
especially in dilute gases, where the dynamics are controlled by collisions [1–3]. Dissipa-
tion is responsible for many interesting collective phenomena including clustering [4–8],
formation of shocks [9–13], and hydrodynamic instabilities [14, 15]. Another consequence
is the anomalous statistical physics that includes the non-Maxwellian velocity distributions
[16–21] and the breakdown of energy equipartition in mixtures [22, 23].
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For an elastic gas in equilibrium, the temperature, defined as the average kinetic energy,
characterizes the entire distribution function including all of the moments, the bulk of the
distribution, as well as the tail of the distribution. Outside of equilibrium, the temperature
is not sufficient to characterize the energy distribution. Granular gases are inherently out
of equilibrium and a complete characterization must therefore include the behavior of typi-
cal particles, the behavior of energetic particles, as well as the moments of the distribution.
For example, the energy distribution may have power-law tails with divergent high-order
moments [24–26] and consequently, the moments exhibit multiscaling [27]. Generally, non-
equilibrium effects are pronounced in the absence of energy input to balance the dissipation
but can be suppressed by injection of energy where the deviation from a Maxwellian distri-
bution affects only extremely energetic particles [17, 28–30].

While there is substantial understanding of the energy distribution of frictionless granular
gases, much less is known theoretically [31–38] and experimentally [39–41] when the rota-
tional degrees of freedom are taken into account. It is difficult to measure the rotational mo-
tion experimentally, and the few available measurements are restricted to two-dimensions.
Surface roughness and friction have important consequences and the hydrodynamic theory
[42–45] must be modified, if the particles have spin [46]. Equipartition does not hold for the
average rotational and translational temperature—neither in the free cooling case [33–36]
nor for a driven system [37]. In general, rotational and linear degrees of freedom are corre-
lated in direction [47].

In this paper, we investigate the nature of the full energy distribution, that is, the bivariate
distribution of rotational and translational energy. Motivated by the fact that on average
the total energy is not partitioned equally between rotational and translational degrees of
freedom, we focus on the bivariate distribution P (E,x) of total energy E and the modified
ratio x = √

Ew/E of rotational to total energy. We thereby generalize the understanding of
frictionless granular matter in terms of the energy distribution to rough grains.

Our starting point is the nonlinear Boltzmann equation with a collision rule that accounts
for the coupling of translational and rotational motion due to tangential restitution. We study
stationary solutions of the inelastic Boltzmann equation that describe steady states achieved
through a balance between energy injections that are powerful but rare and energy dissipa-
tion through inelastic collisions. For high-energy particles we derive a linear equation for the
bivariate energy distribution. The latter can be shown to factorize—P (E,x) = p(E)f (x)—
into a product of the distribution of the total energy, p(E), and the distribution of the fraction
of energy stored in the rotational degrees of freedom, f (x). The former distribution decays
algebraically with energy: p(E) ∼ E−ν . The fraction of energy stored in rotational motion
is universal for energetic particles in the sense that f (x) approaches a limiting distribution
independent of energy. Furthermore, this quantity has a number of interesting features. First,
the distribution is not uniform, as it would be, if equipartition were to hold. Second, the dis-
tribution is not analytic but has singularities at special energy ratios. Third, the distribution
and in particular its singularities depend sensitively on the moment of inertia and the colli-
sion parameters. Only for energetic particles is this distribution well defined. In general, the
partition of energy into rotational and translational motion depends on the magnitude of the
energy. This paper specifically addresses two-dimensions, although the theoretical approach
and the reported qualitative behavior are generic.

We also develop a general framework for describing high-energy collisions and we use
this framework to study freely cooling Maxwell Molecules where the moments of the energy
distribution can be found in a closed form. For example, the two granular temperatures
corresponding to the rotational and translational motions are coupled and generally, they are
not equal. The high-energy behavior found for driven steady-states extends to freely cooling
gases.
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We stress that our main result concerning the singular nature of the energy distribution is
established both with and without driving. Since in the latter case the dynamics are purely
collisional, this phenomena must therefore be the result of the dissipative inelastic collision
dynamics.

The rest of this paper is organized as follows. We review the collision rules and introduce
the nonlinear kinetic theory in Sect. 2. We then derive the linear kinetic theory for high-
energy particles in Sect. 3. Next, in Sect. 4, we study driven steady states and solve for the
stationary energy distribution. Freely cooling Maxwell molecules are discussed in Sect. 5
and we conclude in Sect. 6. The Appendices detail technical derivations.

2 The Nonlinear Inelastic Kinetic Theory

Our system consists of an infinite number of identical particles with mass m = 1, radius R,
and moment of inertia I = qR2 where 0 ≤ q ≤ 1 is a dimensionless quantity. Each particle
has a linear velocity v and an angular velocity w. Its total energy is shared by the linear and
the rotational motion, E = Ev + Ew , or explicitly,

E = 1

2
(v2 + qR2w2), (1)

where v ≡ |v| and w ≡ |w|.
In a collision between two particles, their velocities (vi ,wi ) with the labels i = a, b,

change according to

(va,wa) + (vb,wb) → (v′
a,w′

a) + (v′
b,w′

b), (2)

where the postcollision velocities are denoted by primes. In a binary collision, rotational
and translational energy are exchanged, while the total energy decreases. In this study, we
consider tangential restitution in addition to the standard normal restitution. Let ri be the
position of particle i, then the directed unit vector connecting the centers of the colliding
particles is n̂ = (ra − rb)/|ra − rb|. We term this vector the impact direction. The collision
rules are most transparent in terms of ui the particle velocity at the contact point

ua = va + R n̂ × wa, (3a)

ub = vb − R n̂ × wb. (3b)

The inelastic collision laws state that the normal component of the relative velocity
U = ua − ub is reversed and reduced by the normal restitution coefficient 0 ≤ rn ≤ 1. The
tangential component is either reversed (rough particles) or not (smooth particles) and in any
case reduced by the tangential restitution coefficient −1 ≤ rt ≤ 1, according to the following
collision rules:

U′ · n̂ = −rnU · n̂, (4a)

U′ × n̂ = −rt U × n̂. (4b)

Inelastic collisions conserve linear and angular momentum. Conservation of linear mo-
mentum implies that the total linear velocity does not change, and conservation of angular
momentum enforces that the angular momentum of each particle with respect to the point
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of contact remains the same, because there is no torque acting at the point of contact. The
collision laws (4) combined with these conservation laws specify the postcollision velocities
as linear combinations of the precollision velocities [33]

v′
a = va − ηnV · n̂n̂ − ηt (V − V · n̂n̂) − ηtRn̂ × W,

(5a)
w′

a = wa + ηt

qR
n̂ × V + ηt

q
n̂ × n̂ × W,

v′
b = vb + ηnV · n̂n̂ + ηt (V − V · n̂n̂) + ηtRn̂ × W,

(5b)
w′

b = wb + ηt

qR
n̂ × V + ηt

q
n̂ × n̂ × W,

where the shorthand notations V = va − vb and W = wa + wb were introduced. These col-
lision rules involve the normal and tangential collision parameters, defined as

ηn = 1 + rn

2
, and ηt = q

1 + q

1 + rt

2
. (6)

Their range of values is bounded by 1/2 ≤ ηn ≤ 1 and 0 ≤ ηt ≤ q/(1 + q). Details of the
derivation of the collision rules are given in Appendix 1, as they are relevant for our discus-
sion. The energy dissipation, �E = Ea + Eb − E′

a − E′
b , is given by

�E = 1 − r2
n

4
(V · n̂)2 + q

1 + q

1 − r2
t

4
(V − V · n̂n̂ + Rn̂ × W)2. (7)

The energy dissipation is always positive, except when the collisions are elastic, rn = 1 and
rt = −1 (perfectly smooth spheres) or rt = 1 (perfectly rough spheres).

The collision rate K(va,vb) is the rate by which the two particles approach each other.
For hard spheres, this rate is simply the normal component of the relative velocity, but we
study the general case

K(va,vb) = |(va − vb) · n̂|γ (8)

with 0 ≤ γ ≤ 1. Of course, the collision rate vanishes, K = 0, when the particles are moving
away from each other, (va − vb) · n̂ > 0. When particles interact via the central potential r−κ

then γ = 1 − 2 d−1
κ

[48]. The two limiting cases are hard spheres (γ = 1) and Maxwell
molecules (γ = 0) where the collision rate is independent of the velocity [49–53].

The central quantity in kinetic theory is the probability P (v,w, t) that a particle has the
velocities (v,w) at time t . We study spatially homogeneous situations where this velocity
distribution function is independent of position. Under the strong assumption that the ve-
locities of the two colliding particles are completely uncorrelated, the velocity distribution
obeys the Boltzmann equation

∂P (v,w)

∂t
= 1

2

∫
dn̂

∫ ∫ ∫ ∫
dvadwadvbdwb|(va − vb) · n̂|γ P (va,wa)P (vb,wb)

× [δ(v − v′
a)δ(w − w′

a) + δ(v − v′
b)δ(w − w′

b) − δ(v − va)δ(w − wa)

− δ(v − vb)δ(w − wb)]. (9)



J Stat Phys (2007) 129: 677–697 681

We integrate over all impact directions with
∫

dn̂ = 11 and over the precollision velocities
weighted by the respective probability distributions. There are two gain terms and two loss
terms, because the velocities of interest (v,w) can be identified with any one of the four
velocities in the collision rule (2) and the kernel is simply the collision rate (8).

3 The Linear Inelastic Kinetic Theory

The focus of this study is the energy distribution that generally depends only on two vari-
ables: Ev and Ew . It is our aim to compute the distribution P (Ev,Ew) for asymptotically
large energies. This will be done for a system which is driven at very high energies as well
as for an undriven system.

It is well-established that the nonlinear inelastic kinetic theory reduces to a linear equa-
tion at high-energies. The corresponding linear kinetic theory can be obtained through a
small wave number expansion in the special case of Maxwell molecules [24, 25], through
saddle point or WKB analysis [28], or equivalently through consideration of collisions in-
volving high-energy particles [54]. The consequent velocity distributions are overpopulated
with respect to a Maxwellian distribution, typically with stretched exponentials or power-
law tails. Moreover, the extreme velocity statistics resulting from the linear kinetic theory
can be validated against exact solutions of the full nonlinear kinetic theory in special cases
[54] and against numerical simulations in general.

We simplify the Boltzmann equation in the limit of large energies by considering the
collision laws governing energetic particles. Extremely energetic particles are rare and as a
result it is unlikely that such particles will encounter each other. Hence, energetic particles
typically collide with much slower particles. Since the collision rules are linear, the velocity
of the slower particle barely affects the outcome of the collision. We can therefore neglect the
slower velocity. Substituting (va,wa) = (v0,w0) and (vb,wb) = (0,0) or (va,wa) = (0,0)

and (vb,wb) = (v0,w0) into (5) gives the cascade process [54, 55]

(v0,w0) → (v1,w1) + (v2,w2), (10)

where (v0,w0) is the precollision velocity of the energetic particle and (vi ,wi ) with i = 1,2
are the consequent postcollision velocities. With these definitions, the collision rules for
extremely energetic particles are

v1 = (1 − ηn)v0 · n̂n̂ + (1 − ηt )(v0 − v0 · n̂n̂) − ηt n̂ × w0,

(11a)
w1 =

(
1 − ηt

q

)
w0 + ηt

q
n̂ × v0,

v2 = ηnv0 · n̂n̂ + ηt (v0 − v0 · n̂n̂) + ηt n̂ × w0,

(11b)w2 = −ηt

q
w0 + ηt

q
n̂ × v0,

where we have set R = 1, so that the moment of inertia, I = q , is dimensionless. A collision
between a high-energy particle and a typical-energy particle produces two energetic particles

1We tacitly ignore the condition (va − vb) · n̂ < 0 because the collision rules are invariant under exchange of
the two particles.
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with an energy total that is smaller than the initial energy. This cascade process transfers
energy from large scales to small scales.

Since the cascade process (10) involves only one particle, the tail of the probability dis-
tribution P (v,w) obeys the linear equation

∂P (v,w)

∂t
=

∫ ∫ ∫
dn̂dv0dw0|v0 · n̂|γ P (v0,w0)[δ(v−v1)δ(w − w1)

+ δ(v−v2)δ(w − w2) − δ(v−v0)δ(w − w0)]. (12)

There are two gain terms and one loss term according to the cascade process (10). Formally,
this linear rate equation can be obtained from the full nonlinear equation (9) by treating
either one of the precollision velocities as negligible and then integrating over this small
velocity. This procedure leads to four gain terms and two loss terms and thus, the factor 1/2
in (9) drops out. We stress that the linear equation (12) is valid only in the high-energy limit.

We also comment that the linear equation (12) for the high-energy tail of the velocity
distribution may be valid in cases where the full nonlinear equation is not. Whereas the
nonlinear equation requires that all possible velocities are uncorrelated, the linear equation
merely requires that energetic particles are uncorrelated with typical particles. This is a much
weaker condition.

In this paper, we restrict ourselves to two space dimensions, i.e. rotating disks. In that
case the rotational velocities are always perpendicular to the linear velocities. Thus, we
conveniently denote the unit vector in the tangential direction by t̂ and the unit vector coming
out of the plane by ẑ, such that n̂ · t̂ = 0 and n̂ × t̂ = ẑ. The precollision velocities of the
energetic particle v0 = vnn̂ + vt t̂ and w0 = wẑ are compactly written as [vn, vt ,w]. With
this notation, the postcollision velocities specified in (12) are

[(1 − ηn)vn, (1 − ηt )vt + ηtw, (ηt/q)vt + (1 − ηt/q)w], and
(13)

[ηnvn, ηt (vt − w), (ηt/q)(vt − w)],

respectively. We now treat the three velocity components, namely the normal component of
the velocity vn, the tangential component of the velocity vt , and the scaled angular veloc-
ity

√
qw as a three dimensional vector with magnitude V0, polar angle θ0, and azimuthal

angle φ0:

(vn, vt ,
√

qw) = (V0 sin θ0 cosφ0,V0 sin θ0 sinφ0,V0 cos θ0). (14)

The magnitude V0 gives the energy E0 = 1
2 V 2

0 = 1
2 (v2

n + v2
t + qw2) while the polar

angle characterizes the fraction of energy stored in the rotational degree of freedom,
1
2 qw2/E0 = cos2 θ . In this representation, the postcollision velocities are three-dimensional
vectors with magnitude Vi , polar angle 0 ≤ θi ≤ π , and azimuthal angle 0 ≤ φi ≤ 2π . The
collision rules (11) allow us to express these quantities in terms of V0, θ0, φ0:

(Vi sin θi cosφi,Vi sin θi sinφi,Vi cos θi) = (V0Ai,V0Bi,V0Ci), (15)

where i = 1,2. The magnitudes of the postcollision velocities are proportional to the mag-
nitude of the precollision velocity. The three velocity components are scaled by three di-
mensionless constants Ai , Bi and Ci , that depend on the angles θ0 and φ0 of the energetic
particle, the collision parameters ηn and ηt , and the moment of inertia q ,
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A1 = (1 − ηn) sin θ0 cosφ0, (16a)

B1 = (1 − ηt ) sin θ0 sinφ0 + (ηt/
√

q) cos θ0, (16b)

C1 = (ηt/
√

q) sin θ0 sinφ0 + (1 − ηt/q) cos θ0, (16c)

A2 = ηn sin θ0 cosφ0, (16d)

B2 = ηt sin θ0 sinφ0 − (ηt/
√

q) cos θ0, (16e)

C2 = (ηt/
√

q) sin θ0 sinφ0 − (ηt/q) cos θ0. (16f)

The new energies are proportional to the precollision energies

Ei = αiE0, with αi = A2
i + B2

i + C2
i . (17)

We term the parameters 0 < αi < 1 the contraction parameters. Since the collisions are
dissipative, these parameters satisfy the inequality α1 + α2 ≤ 1. The equality α1 + α2 = 1
holds only for elastic collisions (rn = |rt | = 1). The energy dissipation is

�E = E0 − E1 − E2 = 
E

with 
 = 1 − α1 − α2 or explicitly,


 = 1 − r2
n

4
sin2 θ0 cos2 φ0 + q

1 + q

1 − r2
t

4

(
sin2 θ0 sin2 φ0 + 1

q
cos2 θ0

)
. (18)

The polar and azimuthal angles are given by

cos θi = Ci√
A2

i + B2
i + C2

i

and tanφi = Bi

Ai

, (19)

respectively.
As (18) shows, the energy dissipation vanishes in the limit of elastic collisions. The linear

kinetic theory applies when one of the two velocities is divergent while the other is fixed. In
this limit, the fixed velocity is negligible. Also, as reflected by (10), momentum conservation
holds.

Let us represent solid angles by � ≡ cos θ,φ. With this definition, the cascade process
(11) is

(E0,�0) → (E1,�1) + (E2,�2) (20)

with Ei and �i given by (17) and (19). Energetic particles have an important property:
the solid angle is not coupled to the energy! Indeed, the postcollision angles depend only
on the precollision angle. The cascade process has the following geometric interpretation:
a three dimensional vector is duplicated into two vectors. Subsequently, these two vectors
are scaled down by the contraction parameters (17), and rotated according to the angular
transformation (19).

We can now write the linear Boltzmann equation for P (E,�), the distribution of energy
and solid angle, in a closed form

∂P (E,�)

∂t
=

∫ ∫
dE0d�0|

√
E0 sin θ0 cosφ0|γ P (E0,�0)[δ(E − E1)δ(� − �1)

+ δ(E − E2)δ(� − �2) − δ(E − E0)δ(� − �0)].
Time was rescaled, t → 2γ /2t , to absorb the constant which arises from replacing velocity
by energy in the collision rate (8). Henceforth, we implicitly assume that the distribution
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P (E,�) is independent of φ because the distribution of linear velocities must be isotropic.
The integration over the energy is performed using the collision rule (17), leading to the
linear rate equation for the tail of the energy distribution

∂P (E,�)

∂t
= Eγ/2

∫
d�0| sin θ0 cosφ0|γ

[
P

(
E

α1
,�0

)
δ(� − �1)

α
1+γ /2
1

+ P

(
E

α2
,�0

)
δ(� − �2)

α
1+γ /2
2

− P (E,�0)δ(� − �0)

]
. (21)

This is a non-local equation as the density of particles with energy E is coupled to the
density of particles with the higher energies E/α1 and E/α2. We stress that this equation
is a straightforward consequence of the cascade process (20) and that it can also be derived
from the full nonlinear Boltzmann equation. Yet, there may be situations where the linear
equation (21) is valid, while the nonlinear equation (9) is not valid. The bivariate energy
distributions P (E,�) and P (Ev,Ew) are completely equivalent but we analyze the former
because the cascade process (20) is transparent in terms of the total energy and the solid
angle.

4 Driven Steady-States

The inelastic Boltzmann equation admits stationary solutions for frictionless particles. These
stationary solutions describe driven steady-states with rare but powerful injection of energy.
The injected energy cascades from high-energies down to small energies, thereby balancing
the energy lost in collisions. At energies below the injection scale, (9), (12) and (21) are not
altered by the energy source and consequently, the stationary solution of the inelastic Boltz-
mann equation holds up to this large energy scale [54, 55]. Here, we seek a corresponding
stationary solution for particles with rotational degrees of freedom in the high energy limit.

The stationary solution has to fulfill (21) with the left hand side set to zero

0 =
∫

d�0| sin θ0 cosφ0|γ
[

1

α
1+γ /2
1

P

(
E

α1
,�0

)
δ(� − �1)

+ 1

α
1+γ /2
2

P

(
E

α2
,�0

)
δ(� − �2) − P (E,�0)δ(� − �0)

]
. (22)

At high-energies, the solid angle is not coupled to the energy, as follows from (19). This
fact has a major consequence: the bivariate energy distribution P (E,�) takes the form of a
product of the energy distribution p(E) = ∫

d�P(E,�) and the distribution of solid angle,
g(�),

P (E,�) → p(E)g(�) (23)

as E → ∞. The angle distribution is normalized,
∫

d�g(�) = 1. It does not depend on the
azimuthal angle, because on average the two components of the linear velocity are equiv-
alent. Due to the equi-dimensional (in E) structure of the steady-state equation (22), the
product ansatz (23) is a solution when the distribution p(E) decays algebraically

p(E) ∼ E−ν, (24)
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as E → ∞ [54, 55]. We obtain a closed equation for the distribution g(�) by substituting
the product ansatz (23) with the power-law form (24) into the steady-state equation (22)

0 =
∫

d�0g(�0)| sin θ0 cosφ0|γ
[
α

ν−1−γ /2
1 δ(� − �1) + α

ν−1−γ /2
2 δ(� − �2) − δ(� − �0)

]
.

(25)
This equation is linear in g(�). However, it is nonlinear in ν and moreover, the solid angles
�i ≡ �i(�0) in (19) and the contraction parameters αi ≡ αi(�0) in (17) are complicated
functions of the solid angle �0.

Equation (25) involves two unknowns quantities, the exponent ν and the distribution
function g(�). A solution does not exist for arbitrary values of ν. In fact, there is one and
only one value of ν for which there is a solution for g(�). This is the value selected by the
cascade dynamics! In other words, (25) is an eigenvalue equation: ν is the eigenvalue and
g(�) is the eigenfunction. This eigenvalue equation circumvents the full nonlinear equation
(9) and thus, represents a significant simplification.

The physical interpretation of (25) involves a cascade process in which the solid angle
undergoes a creation-annihilation process

�0 →

⎧⎪⎨
⎪⎩

∅ with rate β0,

�1 with rate β1,

�2 with rate β2.

(26)

Here, βi = | sin θ0 cosφ0|γ αi for i = 0,1,2 and α0 = 1. There is one annihilation process
and two creation processes. These processes have relative weights that reflect the powerlaw
decay of p(E). At the steady-state, the creation and the annihilation terms balance (see
Appendix 2), as reflected in the integrated form of (25)

0 =
∫

d�0g(�0)| sin θ0 cosφ0|γ
[
α

ν−1−γ /2
1 + α

ν−1−γ /2
2 − 1

]
. (27)

To achieve a steady-state, βi < β0 for i = 1,2 and therefore α
ν−1−γ /2
i < 1. Since αi < 1, we

have the lower bound ν > 1 + γ /2.
We can immediately check that for elastic collisions, ν = 2 + γ /2 [56, 57] because

α1 + α2 = 1, and therefore, we conclude the bounds 1 + γ /2 ≤ ν ≤ 2 + γ /2. The expo-
nent ν varies continuously with the restitution coefficients rn and rt and the normalized
moment of inertia q . This quantity must coincide with the value found for frictionless parti-
cles where tangential restitution is irrelevant (rt = −1) [54, 55],2 but otherwise the exponent
is distinct, as shown in Fig. 1. Also, the exponent ν increases monotonically with rn and |rt |.
We conclude that the rotational degrees of motion do affect the power-law behavior (24).

The solutions of the inelastic Boltzmann equation reported here have algebraic tails and
they generalize the so-called “eternal” solutions of the classic elastic Boltzmann equations
that also have power-law tails [56, 57] to the inelastic regime. While in the elastic case
these solutions have infinite energy, in the inelastic case the total energy may or may not be
divergent. However, the dissipation rate is always divergent [54, 55]. We note that it is not
clear how to physically realize these solutions in the elastic case.

The azimuthal angle θ characterizes the fraction of energy stored in the rotational mode,
cos2 θ = Ew/E with Ew = 1

2qw2. The angle distribution g(�) = (2π)−1f̃ (cos θ) therefore

2The high-energy behavior (24) is equivalent to the large-velocity tail P(v) ∼ v−σ with σ = 2(ν − 1) + d .
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Fig. 1 The exponent ν for hard
spheres (γ = 1) as a function of
the coefficients of normal, rn ,
and tangential, rt , restitution
coefficients. The numerical
procedure for solving (25) is
detailed below

captures the partition of energy into rotational and translational energies. We introduce the
natural variable 0 ≤ x ≤ 1 defined by x = | cos θ | so that

x =
√

Ew

E
(28)

and present results for the angle distribution f (x) = 2f̃ (cos θ). In equilibrium, energy is
partitioned equally into all degrees of freedom and therefore geq(�) = (4π)−1 or equiva-
lently,

feq(x) = 1 (29)

for 0 ≤ x ≤ 1. In particular, 〈x2〉 = 1/3.

4.1 Simulation Methods

We numerically studied the angle distribution f (x) by solving the linear eigenvalue equation
(25) for the “angular” process (26) and by solving the full nonlinear Boltzmann equation (9)
for the collision process (2). Both of these equations are solved using Monte Carlo simula-
tions.

The eigenvalue equation is solved by mimicking the angular process. Throughout the
simulation, the value ν is fixed. There are N particles, each with a given polar angle. A par-
ticle with polar angle θ0 is picked at random and then, a random azimuthal angle φ0 is drawn.
The polar angles θ1 and θ2 are then calculated according to (19). The original particle is an-
nihilated with probability β0 and simultaneously, a new particle with angle θ1 is created with
probability β1 and similarly, a second particle with angle θ2 is created with probability β2.
Therefore, the number of particles may increase by one, remain unchanged, or decrease by
one. The exponent ν is the value that keeps the total number of particles constant in the long
time limit. The eigenvalue ν is calculated by repeating this simulation for various values
of ν and then using the bisection method [58]. We present Monte Carlo simulations of 100
independent realizations with N = 107 particles.

Driven steady-states are obtained by simulating the two competing processes of inelastic
collisions and energy injection. In an inelastic collision, two particles are picked at random
and also, the impact direction is chosen at random. The particle velocities are updated ac-
cording to the collision law (5). Collisions are executed with probability proportional to the
collision rate. Throughout this process, we keep track of the total energy loss. With a small
rate, we augment the energy of a randomly selected particle by an amount equal to the loss
total and subsequently, reset the total energy loss to zero. A fraction of the injected energy is
rotational and the complementary fraction is translational. We draw this fraction according
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Fig. 2 The tail of the energy
distribution for driven Maxwell
molecules. Shown are simulation
results (solid line) and a line with
the slope predicted by the theory
(dashed line). The energy is
normalized by the typical
energy 10−4

to the equilibrium distribution (29). We experimented with different angle distributions and
found that the resulting stationary state did not change.

Obtaining the distribution f (x) is generally challenging as it requires excellent statistics.
The simulations are most efficient for Maxwell molecules because all possible collisions
are equally likely. Therefore, for the full nonlinear Boltzmann equation (9), we present the
angle distribution of the energetic particles only for the case γ = 0.

For Maxwell molecules, the injection rate is 10−4 and the system size is N = 107. The
corresponding values for hard spheres are 10−2 and N = 105. In all cases, the simulation
results represent an average over 102 independent realizations. Unless noted otherwise, the
simulation results are for maximally dissipative (rn = rt = 0) disks (q = 1/2).

4.2 The Distribution of Total Energy

The numerical simulations confirm several of our theoretical predictions. First, the energy
distribution approaches a steady-state with a power-law high-energy tail. Second, the distrib-
ution of the total energy p(E) decays algebraically as in (24). Third, the exponent ν is in ex-
cellent agreement with the predictions of the eigenvalue equation. For Maxwell molecules,
Monte Carlo simulation of the full nonlinear equation yields ν = 1.570 ± 0.005 whereas
numerical solution of the eigenvalue equation (25) gives ν = 1.569 ± 0.005 (Fig. 2). For
hard-spheres, where the simulation results are slightly less accurate, the corresponding val-
ues are ν = 2.065±0.005 and ν = 2.060±0.005 (Fig. 3). The behavior of the distribution of
total energy is therefore qualitatively similar to the behavior in the no-rotation case [54, 55].
However, the quantitative behavior is different because the exponent ν does depend on the
tangential restitution coefficient and the moment of inertia (Fig. 1).

4.3 The Angle Distribution

The numerical simulations also confirm several of our theoretical predictions concerning
the angle distribution. Extremely energetic particles have a universal distribution f (x). This
distribution is independent of the energy, provided that the energy is sufficiently large. We
had to probe only the most energetic particle out of roughly 103 particles to measure this
distribution. For this reason, the linear analysis and the resulting eigenvalue equation are
valuable because they allow for an accurate and efficient determination of the angle dis-
tribution of the energetic particles. We also verified that the distribution f (x) obeys the
eigenvalue equation (25), as demonstrated in Fig. 4, where the simulations are compared to
the solution of the angular process.
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Fig. 3 The tail of the energy
distribution for driven hard
spheres. Shown are simulation
results (solid line) and a line with
the slope predicted by the theory
(dashed line)

Fig. 4 The angle distribution
f (x) obtained by Monte Carlo
simulation of the angular process
(26) (solid line) and the collision
process (2) (dashed line) for
Maxwell molecules. The special
values x1, x2, and x3 discusses in
the text are indicated by arrows

Fig. 5 The angle distribution
f (x) for various collision
parameters (rn and rt ) for
Maxwell molecules

The distribution f (x) has several noteworthy features. First, it is not uniform, implying
the breakdown of energy equipartition in a granular gas. Furthermore, this distribution is
nonanalytic. It contains singularities and discontinuous derivatives. There are notable peaks
in the distribution so that special values x and special ratios Ew/E are strongly preferred.
The reason for these peaks is the fact that the polar angle is limited. For example, cos2 θ2 <

1/(1 + q) as seen by substituting cos θ0 = ±1 into (16) and (19). Consequently, there is a
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Fig. 6 The angle distribution
f (x) for hard spheres

special ratio

x1 =
√

1

1 + q
(30)

with the corresponding special energy ratio Ew/E = x2
1 . This is the most pronounced peak

in Fig. 4, x1 = √
2/3 = 0.81649. Numerically, we observe that the peak becomes more pro-

nounced as the distribution is measured at a finer scale, indicating that the distribution func-
tion diverges at this point.

Similarly, there is another special ratio that corresponds to θ1 when cos θ0 = ±1, and
unlike (30), this location depends on the tangential restitution,

x2 = 1 − ηt/q√
η2

t /q + (1 − ηt/q)2
. (31)

Indeed, there is a barely noticeable cusp at x2 = √
8/9 = 0.942809. Singularities may induce

less pronounced “echo”-singularities. For example, using cos θ0 = x1 and φ0 = π/2 yields
the special ratio

x3 = 1 + ηt (1 − 1/q)√
q[1 − ηt (1 − 1/q)]2 + [1 + ηt (1 − 1/q)]2

. (32)

There is a noticeable peak at the corresponding value x3 = √
50/99 = 0.710669 in Fig. 4.

We anticipate that as the transformation (19) is iterated, the strength of the singularities
weakens and as a result there are discontinuous derivatives of increasing order, a subtle
behavior that is difficult to measure.

The location of the singularities varies with the collision parameters rn and rt and the mo-
ment of inertia q . In fact, the angle distribution is extremely sensitive to material properties
as its shape changes dramatically with these parameters, see Fig. 5. The angle distribution
also depends on the collision rate and it is much smoother for hard spheres, see Fig. 6. Since
the collision rate vanishes for grazing collisions, φ = π/2, the associated singularities in-
cluding in particular (32) are suppressed. Nevertheless, there is a pronounced jump at the
special ratio given by (30) and there are also noticeable cusps.

The angle distribution of all particles fall(x) ∝ ∫
dEP (E,�) is shown in Fig. 7. It is sub-

stantially different from f (x). Therefore, the energy distribution P (E,�) does not factorize
in general and there are correlations between the solid angle and the total energy. Only for
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Fig. 7 The angle distribution
fall(x) of all particles for
Maxwell molecules (solid line).
Also shown for reference is the
uniform equilibrium distribution
(broken line)

energetic particles does (23) hold. Moreover, fall(x) is much smoother in comparison with
f (x) although there is a jump in the first derivative at the special ratio (30) showing that
the angle distribution of all particles is also non-analytic, see Fig. 7. Generally, the angle
distribution depends on energy and the deviation from a uniform distribution grows with
energy.

We also comment that lone measurement of the moment 〈x2〉 can be misleading. The
angle distribution may very well have a value close to the equipartition value 〈x2〉eq = 1/3
but still, be very far from the equilibrium distribution. Indeed, in Fig. 4, 〈x2〉 ∼= 0.318, a value
that barely differs from the equilibrium value, even though the corresponding distribution is
far from uniform. The second moment may also differ substantially from the equipartition
value and for example, 〈x2〉 = 0.202 when rn = 0.9 and rt = 0 (Fig. 5).

We argue that the qualitative features of the angle distribution should be generic in gran-
ular materials. Collisions involving energetic particles must follow the linear cascade rules
(20) with the angular transformations (19). The singularities are a direct consequence of
these transformations and therefore should be generic. Measuring the parameter-sensitive
distribution f (x) experimentally is challenging because a huge number of particles must be
probed and the measurement has to be accurate. The distribution fall(x) provides a detailed
probe of the partition of energy into rotational and translation motion.

5 Free Cooling

We now consider freely cooling granular gases that evolve via purely collisional dynamics.
Without energy input, all energy is eventually dissipated and the particles come to rest.
This system has been studied extensively [1] for hard spheres with [33, 47] and without
rotation [59].

We consider Maxwell molecules where in the absence of rotation an exact treatment is
possible [24, 25, 27, 60, 61]. When γ = 0 the Boltzmann equation (9) simplifies

∂P (v,w)

∂t
= 1

2

∫
dn̂

∫ ∫ ∫ ∫
dvadwadvbdwbP (va,wa)P (vb,wb)

× [δ(v − v′
a)δ(w − w′

a) + δ(v − v′
b)δ(w − w′

b) − δ(v − va)δ(w − wa)

− δ(v − vb)δ(w − wb)]. (33)

Consequently, the equations for the moments 〈vnwm〉 = ∫∫
dvdwP (v,w)vnwm close.
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5.1 The Temperatures

Here, we consider only the translational temperature defined as the average translational
energy, Tv = 〈Ev〉, and the rotational temperature, defined as the average rotational energy
Tw = 〈Ew〉. These two temperatures are coupled through the linear equation

d

dt

(
Tv

Tw

)
= −

(
λvv λvw

λwv λww

)(
Tv

Tw

)
. (34)

Appendix 3 details the derivation of the matrix of coefficients

λvv = ηn(1 − ηn) + ηt (1 − ηt ), (35a)

λvw = −2η2
t /q, (35b)

λwv = −η2
t /q, (35c)

λww = 2(ηt/q)(1 − ηt/q). (35d)

The two temperatures are coupled as long as ηt 
= 0 or alternatively, rt 
= −1.
The solution of (34) is a linear combination of the two eigenvectors

(
Tv

Tw

)
= C−

(
1
c−

)
e−λ−t + C+

(
1
c+

)
e−λ+t (36)

with the constants C− and C+ set by the initial conditions, and c± = (λ± − λvv)/λvw . The
eigenvalues are

λ± = λvv + λww

2
±

√(
λvv − λww

2

)2

+ λvwλwv. (37)

The larger eigenvalue is irrelevant in the long time limit and therefore,

(
Tv

Tw

)
→ C−

(
1
c−

)
e−λt (38)

such that both temperatures decay with the same rate λ ≡ λ−. Of course, the total tem-
perature also follows the same exponential decay, T = Tv + Tw ∼ e−λt . In this regime, the
fraction of rotational energy is on average

lim
t→∞

Tw

T
= c−

1 + c−
= λ − λvv

λ + λvw − λvv

. (39)

The approach toward this value is exponentially fast and the relaxation time is inversely
proportional to the difference in eigenvalues τ = 1/(λ+ − λ−).

In equilibrium, Tw/T = 1/3 but for nonequilibrium granular gases the ratio varies. In
Fig. 8 we plot the ratio of the average rotational energy to the total energy as a function
of the coefficients of restitution. In accordance with our findings for driven steady-states,
energy is not partitioned equally between all the degrees of freedom.
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Fig. 8 The ratio of average
rotational energy to total energy
as a function of the coefficients
of normal, rn, and tangential, rt ,
restitution

5.2 The Energy Distribution

To study the full energy distribution, it is again convenient to make a transformation of
variables from the velocity pair (v,w) to the total energy and the solid angle (E,�). The
energy distribution is now time dependent and assuming that the temperature—T ∼ e−λt —is
the characteristic energy scale we postulate the self-similar form

P (E,�, t) → eλt�(Eeλt ,�) (40)

with the prefactor ensuring proper normalization,
∫∫

dzd��(z,�) = 1. We focus on the
high-energy behavior where the linear equation (21) holds. By substituting the scaling form
(40) into this linear equation and setting γ = 0, we find the integro-differential equation
governing the scaling function

λ�(z,�) + λz
d

dz
�(z,�) =

∫
d�0

[
1

α1
�

(
z

α1
,�0

)
δ(� − �1)

+ 1

α2
�

(
z

α2
,�0

)
δ(� − �2) − �(z,�0)δ(� − �0)

]
. (41)

We again write the multivariate energy distribution as a product �(z,�) → ψ(z)g(�) of the
distribution of the total energy ψ(z) = ∫

d��(z,�) and the distribution of the solid angle
g(�). This form is a solution of the equi-dimensional equation (41) when the distribution of
the total energy decays as a power-law

ψ(z) ∼ z−ν (42)

at large energies, z → ∞. The angle distribution satisfies the eigenvalue equation

0 =
∫

d�0g(�0){αν−1
1 δ(� − �1) + αν−1

2 δ(� − �2) − [1 − λ(ν − 1)]δ(� − �0)}. (43)

Of course, setting λ = 0, one recovers the steady-state equation (25) reflecting that the sim-
ilarity solution is stationary. The factor 1 is replaced by the smaller factor 1 − λ(ν − 1) that
accounts for the constant decrease in the number of particles at any given energy because of
dissipation. Again, we have a nonlinear eigenvalue equation with the eigenvalue ν and the
eigenfunction g(�).

We solve this eigenvalue equation by performing a Monte Carlo simulation of the same
angular process as described by (26) but with a different annihilation rate β0 = 1−λ(ν −1).
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Fig. 9 The scaling function
underlying the energy
distribution (solid line). The
distribution was obtained using a
Monte Carlo simulation with
N = 107 particles. A dashed line
with the slope predicted by the
theory is also shown for reference

Fig. 10 The angle distribution of
the energetic particles. Shown are
results for the collision process
(solid line) and for the angular
process (dashed line)

We compare the angle distribution predicted by (43) with the behavior of the energetic par-
ticles in the freely cooling gas.

The numerical simulations of the inelastic collision process confirm the theoretical pre-
dictions. First, the energy distribution is self-similar as in (40) and the characteristic scale
is proportional to the temperature. Second, the distribution of the total energy has a power-
law tail, as displayed in Fig. 9 and the exponent ν is very close to the theoretical prediction
(numerical simulations of the collision process gives ν = 2.98 ± 0.05 while the eigenvalue
equation yields ν = 2.92 ± 0.05).

The angle distribution deviates even more strongly from the uniform distribution with a
very pronounced peak (see Fig. 10) because the dynamics are purely collisional. The singu-
larities are weaker although the one at x1 given by (30) is clear. The agreement between the
solution of the angular process and the Monte Carlo simulations is slightly worse than for
driven systems because the statistics become prohibitive: now it is necessary to probe the
most energetic out of roughly 106 particles to obtain the asymptotic angle distribution! The
sharper power-law decay is responsible for this three order of magnitude increase: the cumu-
lative distribution of total energy decays according to

∫
E

dE′p(E′) ∼ E−μ with μ = ν − 1
about three times larger than before. Finally, the angle distribution of all particles deviates
only slightly from a uniform distribution (see Fig. 11). We conclude that the behavior of the
freely cooling gas is qualitatively similar to that found in driven steady-states.
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Fig. 11 The angle distribution of
all particles for a freely cooling
gas (solid line). Also shown for
reference is the uniform
equilibrium distribution

6 Conclusions and Outlook

The complete description of granular media with translational and rotational degrees of
freedom requires the full bivariate distribution of energies. It is not sufficient to consider only
the average kinetic energy of translations and rotations. Instead the full bivariate distribution
is highly nontrivial. We have shown that in the limit of large particle energy, this distribution
obeys a linear equation. Its solution can be written as a product of two distributions, one for
the total energy, E = Ev + Ew , and one for the variable x = √

Ew/E, which captures the
partition of the total energy between rotational and translational motion. The distribution of
the total energy decays algebraically and the characteristic exponent depends on the collision
parameters and the moment of inertia. The variable x is not uniformly distributed as in
equilibrium. Instead the distribution f (x) is not analytic and displays a series of singularities
of varying strengths. Remarkably, there are special preferred ratios of rotational-to-total
energy. This violation of energy equipartition among different degrees of freedom is a direct
consequence of the energy dissipation. The total energy and the variable x are correlated
in general with the deviations from equilibrium increasing with energy. These two variable
become uncorrelated only at extremely high-energies.

We stress that both for the driven case and the undriven case, the singular energy distri-
butions are obtained from two independent methods: from simulations of the full nonlinear
Boltzmann equation and from solutions of the reduced linear Boltzmann equation. The ex-
cellent agreement between the two provides strong validation of our main result.

We have studied both, the system which is driven at extremely high energies and displays
a stationary energy cascade on energy scales below the driving one, and a freely cooling gas.
In the latter gas the bivariate energy distribution is time dependent, reflecting the overall
decrease of energy. Nevertheless, scaling the total energy with temperature, one finds a self-
similar form for the distribution, which again factorizes in the high-energy limit. As in the
driven system, the distribution of the total energy decays as a power law with, however,
different exponents for the driven and the free cooling system. The angular distribution
deviates even more from the uniform (equipartition) one in the cooling system.

It should be straightforward to extend these results to three dimensions where the angular
process takes place in six dimensions. In the limit of high energies one would again expect a
limiting distribution for the partition angle x = √

Ew/E. Another possible extension refers
to a more realistic law of friction, including Coulomb friction [39, 40]. Finally, it would be of
interest to extend the analysis to other systems, where equipartition is violated. An example
is a binary mixture, where the energy is shared unequally between the two components.
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Appendix 1: The Collision Rules

The total linear momentum v′
a + v′

b = va + vb is conserved in the collision. The angular
momenta of the two particles with respect to the point of contact, ω′

i , are given by

Iωa = Iwa + mRn̂ × va, (44a)

Iωb = Iwb − mRn̂ × vb. (44b)

These are conserved, ω′
i = ωi with i = a, b, because there is no torque at the point of contact.

In inelastic collisions, the normal and tangential components of the relative velocity at the
point of contact obey the collision law (4) where U = V + Rn̂ × W.

It is convenient to introduce the momentum transfer δ, defined as follows: v′
a = va − δ

and v′
b = vb + δ. Conservation of the angular velocity with respect to the point of contact

and (44) gives w′
i = wi + 1

qR
n̂ × δ. In terms of δ, the difference in velocity at the point of

contact is U′ = U − 2δ + 2
q

n̂ × n̂ × δ. Substituting this expression into the collision laws (4),
the normal and the tangential components of δ are simply

δ · n̂ = ηnU · n̂, (45a)

δ × n̂ = ηtU × n̂. (45b)

Consequently, the momentum transfer is δ = ηnU · n̂n̂ + ηt (U − U · n̂n̂) or explicitly,

δ = ηnV · n̂n̂ + ηt (V − V · n̂n̂) + ηtRn̂ × W . (46)

We now have the explicit collision rules (5).

Appendix 2: Particle Number Conservation

In this appendix, we verify that the stationary solution is consistent with particle number
conservation. Maxwell Molecules are considered for simplicity. It is straightforward to gen-
eralize this calculation to all γ and to free cooling.

Our starting point is (21), specialized to Maxwell molecules, i.e. γ = 0,

∂P (E,�)

∂t
=

∫
d�0

[
1

α1
P

(
E

α1
,�0

)
δ(� − �1)

+ 1

α2
P

(
E

α2
,�0

)
δ(� − �2) − P (E,�0)δ(� − �0)

]
. (47)

As a first step we integrate this equation over the solid angle

∂p(E)

∂t
=

∫
d�0

[
1

α1
P

(
E

α1
,�0

)
+ 1

α2
P

(
E

α2
,�0

)
− P (E,�0)

]
. (48)
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The power-law behavior (24) typically holds in a restricted energy range, El ≤ E ≤ Eu,
where El and Eu are upper and lower cutoffs. In the driven case, the upper cutoff is set
by the energy injection scale. Let N = ∫ Eu

El
dEp(E) be the total number of particles in this

range. With the powerlaw decay (24), then

N ∼ 1

ν − 1
(E1−ν

l − E1−ν
u ). (49)

To evaluate this time evolution of N , we substitute the product form (23) into (48) and
integrate over the energies in the aforementioned power-law range,

∂N

∂t
= N

∫
d�0g(�0)[αν−1

1 + αν−1
2 − 1]. (50)

Using (27), we confirm that the total number of particles is conserved, ∂N/∂t = 0.

Appendix 3: The Matrix Coefficients

In an inelastic collision, the translational energy loss is �Ev = Ev − E′
v with

Ev = 1
2 (v2

a + v2
b) and similarly, the rotational energy loss is �Ew = Ew − E′

w with
Ew = 1

2 q(w2
a + w2

b). We can conveniently calculate these quantities by using
v′

a = va − δ, v′
b = vb + δ, and w′

i = wi + (1/qR)n̂ × δ, and by expressing the momen-
tum transfer δ using the natural coordinate system, δ = ηnVnn̂ + ηt (Vt − W)t̂,

�Ev = ηn(1 − ηn)V
2
n + ηt (1 − ηt )V

2
t − η2

t W
2 + ηt (2ηt − 1)VtW, (51a)

�Ew = −(η2
t /q)V 2

t + ηt (1 − ηt/q)W 2 − ηt (1 − 2ηt/q)VtW. (51b)

The rate of change of the respective temperatures equals 1/2 the average of this quanti-
ties, d

dt
Tv = 1

2 〈�Ev〉 and d
dt

Tw = 1
2 〈�Ew〉. This is seen by multiplying (33) by 1

2v2 and by
integrating over the velocity. The averaging is with respect to the probability distribution
functions of the two colliding particles. The cross-term vanishes, 〈VtW 〉 = 0, by symme-
try. Using 〈V 2

n 〉 = 2〈v2
n〉 = 〈v2〉 = 2Tv and 〈W 2〉 = 2〈w2〉 = 4Tw/q we obtain the matrix

elements (35).
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